BÀI 27 TRANG 22 SGK TOÁN 8 TẬP 2

Hướng dẫn giải bài xích §5. Phương trình đựng ẩn ngơi nghỉ mẫu, Chương III – Phương trình bậc nhất một ẩn, sách giáo khoa toán 8 tập hai. Nội dung bài bác giải bài xích 27 28 trang 22 sgk toán 8 tập 2 bao gồm tổng phù hợp công thức, lý thuyết, phương thức giải bài tập phần đại số có trong SGK toán sẽ giúp các em học sinh học giỏi môn toán lớp 8.

Bạn đang xem: Bài 27 trang 22 sgk toán 8 tập 2

Lý thuyết

1. Đặt vấn đề

Chúng ta sẽ ban đầu với vấn đề giải phương trình: (fracx^2 – 1x – 1 = x)

Ta sẽ trình bày theo hai cách để chỉ ra vấn đề cần chú ý:

a) Với phương pháp giải: (fracx^2 – 1x – 1 = x Leftrightarrow x^2 – 1 = x(x – 1) Leftrightarrow x^2 – 1 = x^2 – x Leftrightarrow x = 1)

Vậy phương trình có nghiệm x = 1

b) Với các giải: (fracx^2 – 1x – 1 = x Leftrightarrow frac(x – 1)(x + 1)x – 1 = x)

( Leftrightarrow x + 1 = x Leftrightarrow 1 = 0) mâu thuẫn.

Vậy phương trình vô nghiệm.

⇒ lúc giải phương trình cất ẩn sinh sống mẫu, ta cần để ý đến một yếu tố đặc biệt, đó là vấn đề kiện xác minh của phương trình.

2. Tra cứu điều kiện xác minh của phương trình

Đối với các phương trình dạng: (fracA_1(x)B_1(x) + fracA_2(x)B_2(x) + … + fracA_n(x)B_n(x) = 0)

điều kiện khẳng định của phương trình được cho do hệ: (left{ eginarraylB_1(x) e 0\B_2(x) e 0\………\B_n(x) e 0endarray ight.)

Ví dụ:

Tìm điều kiện khẳng định cho phương trình sau: (frac2x^2x^2 – 1 + frac2x – 1x^2 – 5x + 4 = 2.)

Bài giải:

Điều kiện khẳng định của phương trình là: (left{ eginarraylx^2 – 1 e 0,,,,,,,,,,,,,,,,,,,,,,,,,(1)\x^2 – 5x + 4 e 0,,,,,,,,,,,(2)endarray ight.)

Giải (1), ta được: (x^2 e 1 Leftrightarrow x e pm 1.)

Giải (2): (x^2 – 5x + 4 e 0 Leftrightarrow x^2 – x – 4x + 4 e 0 Leftrightarrow x(x – 1) – 4(x – 1) e 0)

( Leftrightarrow (x – 1)(x – 4) e 0 Leftrightarrow left{ eginarraylx – 1 e 0\x – 4 e 0endarray ight. Leftrightarrow left{ eginarraylx e 1\x e 4endarray ight.)

Vậy điều kiện khẳng định của phương trình là: (left{ eginarraylx e pm 1\x e 1\x e 4endarray ight. Leftrightarrow left{ eginarraylx e pm 1\x e 4endarray ight.)

3. Phương thức giải phương trình cất ẩn làm việc mẫu

Để giải phương trình chứa ẩn sinh hoạt mẫu, ta tiến hành theo các bước sau:

– cách 1: tra cứu điều kiện xác định của phương trình

– bước 2: Quy đồng mẫu mã hai vế của hai phương trình rồi khử mẫu.

– bước 3: Giải phương trình vừa dìm được.

– cách 4: trong số giá trị của ẩn tìm được ở cách 3, các giá trị thoả mãn đk xác định đó là nghiệm của phương trình đã cho.

Dưới đây là phần phía dẫn trả lời các thắc mắc có trong bài học cho các bạn tham khảo. Các bạn hãy gọi kỹ câu hỏi trước khi vấn đáp nhé!

Câu hỏi

1. Trả lời thắc mắc 1 trang 19 sgk Toán 8 tập 2

Giá trị (x = 1) có phải là nghiệm của phương trình tốt không? vì sao?

Trả lời:

Giá trị (x = 1) không phải là nghiệm của phương trình.

Vì trên (x = 1) thì (dfrac1x – 1) gồm mẫu bởi (0),vô lí.

Xem thêm:

2. Trả lời câu hỏi 2 trang 20 sgk Toán 8 tập 2

Tìm điều kiện khẳng định của mỗi phương trình sau:

(eqalign& a),,x over x – 1 = x + 4 over x + 1 cr và b),,3 over x – 2 = 2x – 1 over x – 2 – x cr )

Trả lời:

a) (x – 1 ≠ 0) khi (x ≠ 1)

(x + 2 ≠ 0) lúc (x ≠ – 2)

Vậy ĐKXĐ của phương trình (dfracxx – 1 = dfracx + 4x + 1) là (x ≠ 1) với (x ≠ – 2)

b) (x – 2 ≠ 0) khi (x ≠ 2)

Vậy ĐKXĐ của phương trình (dfrac3x – 2 = dfrac2x – 1x – 2 – x) là (x ≠ 2)

3. Trả lời câu hỏi 3 trang 22 sgk Toán 8 tập 2

Giải các phương trình trong thắc mắc 2.

(eqalign& a),,x over x – 1 = x + 4 over x + 1 cr và b),,3 over x – 2 = 2x – 1 over x – 2 – x cr )

Trả lời:

a) (dfracxx – 1 = dfracx + 4x + 1)

ĐKXĐ: (x e 1) với (x e -1)

( Leftrightarrow dfracxleft( x + 1 ight)left( x – 1 ight)left( x + 1 ight) = dfracleft( x – 1 ight)left( x + 4 ight)left( x – 1 ight)left( x + 1 ight))

(eqalign& Rightarrow xleft( x + 1 ight) = left( x – 1 ight)left( x + 4 ight) cr& Leftrightarrow x^2 + x = x^2 + 4x – x – 4 cr& Leftrightarrow x^2 + x = x^2 + 3x – 4 cr& Leftrightarrow x^2 + x – x^2 – 3x = – 4 cr& Leftrightarrow – 2x = – 4 cr& Leftrightarrow x = left( – 4 ight):left( – 2 ight) cr& Leftrightarrow x = 2 ext(thỏa mãn ĐKXĐ)cr )

Vậy tập nghiệm của phương trình là: (S = 2\)

b) (dfrac3x – 2 = dfrac2x – 1x – 2 – x)

ĐKXĐ: (x e2)

(eqalign& Leftrightarrow 3 over x – 2 = 2x – 1 over x – 2 – xleft( x – 2 ight) over x – 2 cr& Rightarrow 3 = 2x – 1 – xleft( x – 2 ight) cr& Leftrightarrow 3 = 2x – 1 – x^2 + 2x cr& Leftrightarrow 3 = – x^2 + 4x – 1 cr& Leftrightarrow x^2 – 4x + 3 + 1 = 0 cr& Leftrightarrow x^2 – 4x + 4 = 0 cr& Leftrightarrow x^2 – 2.x.2 + 2^2 = 0 cr& Leftrightarrow left( x – 2 ight)^2 = 0 cr& Leftrightarrow x = 2 ext (loại) cr )

Vậy tập nghiệm của phương trình là: (S = phi )

Dưới đấy là Hướng dẫn giải bài xích 27 28 trang 22 sgk toán 8 tập 2. Các bạn hãy hiểu kỹ đầu bài trước lúc giải nhé!

Bài tập

tiquenetworkcom.com trình làng với chúng ta đầy đủ phương thức giải bài tập phần đại số 8 kèm bài bác giải bỏ ra tiết bài 27 28 trang 22 sgk toán 8 tập 2 của bài §5. Phương trình chứa ẩn ở mẫu mã trong Chương III – Phương trình bậc nhất một ẩn cho các bạn tham khảo. Nội dung chi tiết bài giải từng bài tập chúng ta xem dưới đây:

*
Giải bài bác 27 28 trang 22 sgk toán 8 tập 2

1. Giải bài bác 27 trang 22 sgk Toán 8 tập 2

Giải các phương trình:

a) ( dfrac2x-5x+5= 3);

b) ( dfracx^2-6x=x+dfrac32)

c) ( dfrac(x^2+2x)-(3x+6)x-3=0);

d) ( dfrac53x+2 = 2x -1)

Bài giải:

a) ĐKXĐ: (x e – 5)

(eqalign& 2x – 5 over x + 5 = 3 cr& Leftrightarrow 2x – 5 over x + 5 = 3(x + 5) over x + 5 cr& Rightarrow 2x – 5 = 3left( x + 5 ight) cr& Leftrightarrow 2x – 5 = 3x + 15 cr& Leftrightarrow 2x – 3x = 15 + 5 cr& Leftrightarrow – x = trăng tròn cr& Leftrightarrow x = – 20 ext (thỏa mãn ĐKXĐ)cr )

Vậy tập nghiệm của phương trình là: (S = -20\)

b) ĐKXĐ: (x e 0)

(eqalign& x^2 – 6 over x = x + 3 over 2 cr& Leftrightarrow 2(x^2 – 6) over 2x = 2x^2 over 2x + 3x over 2x cr& Rightarrow 2left( x^2 – 6 ight) = 2x^2 + 3x cr& Leftrightarrow 2x^2 – 12 = 2x^2 + 3x cr& Leftrightarrow 2x^2 – 2x^2 – 3x = 12 cr& Leftrightarrow – 3x = 12 cr& Leftrightarrow x = 12:left( – 3 ight) cr& Leftrightarrow x = – 4 ext (thỏa mãn ĐKXĐ) cr )

Vậy tập nghiệm của phương trình là: (S = - 4\).

c) ĐKXĐ: (x e 3)

(eqalign& (x^2 + 2x) – (3x + 6) over x – 3 = 0 cr& Rightarrow (x^2 + 2x) – (3x + 6) = 0 cr& Leftrightarrow xleft( x + 2 ight) – 3left( x + 2 ight) = 0 cr& Leftrightarrow left( x + 2 ight)left( x – 3 ight) = 0 cr& Leftrightarrow left< matrixx + 2 = 0 hfill crx – 3 = 0 hfill cr ight. cr& Leftrightarrow left< matrixx = – 2 ext (thỏa mãn ĐKXĐ) hfill crx = 3 ext (loại)hfill cr ight. cr )

Vậy tập nghiệm của phương trình là: (S = -2\)

d) ĐKXĐ: (x e -dfrac23)

(eqalign& 5 over 3x + 2 = 2x – 1 cr& Leftrightarrow 5 over 3x + 2 = left( 2x – 1 ight)left( 3x + 2 ight) over 3x + 2 cr& Rightarrow 5 = left( 2x – 1 ight)left( 3x + 2 ight) cr& Leftrightarrow 5 = 6x^2 + 4x – 3x – 2 cr& Leftrightarrow 5 = 6x^2 + x – 2 cr& Leftrightarrow – 6x^2 – x + 2 + 5 = 0 cr& Leftrightarrow – 6x^2 – x + 7 = 0 cr& Leftrightarrow – 6x^2 + 6x – 7x + 7 = 0 cr& Leftrightarrow – 6xleft( x – 1 ight) – 7left( x – 1 ight) = 0 cr& Leftrightarrow left( x – 1 ight)left( – 6x – 7 ight) = 0 cr& Leftrightarrow left< matrixx – 1 = 0 hfill cr– 6x – 7 = 0 hfill cr ight. cr& Leftrightarrow left< matrixx = 1 hfill cr– 6x = 7 hfill cr ight. cr& Leftrightarrow left< matrixx = 1 ext (thỏa mãn) hfill crx = – dfrac76 ext (thỏa mãn) hfill cr ight. cr )

Vậy tập nghiệm của phương trình là: (S = left 1; – dfrac76 ight\).

2. Giải bài bác 28 trang 22 sgk Toán 8 tập 2

Giải các phương trình:

a) ( dfrac2x-1x-1+1=dfrac1x-1);

b) ( dfrac5x2x+2+1=-dfrac6x+1)

c) (x + dfrac1x= x^2+dfrac1x^2);

d) ( dfracx+3x+1+dfracx-2x = 2).

Bài giải:

a) ĐKXĐ: (x e 1)

(eginarray*20ldfrac2 mx – 1x – 1 + 1 = dfrac1x – 1\eginarraylLeftrightarrow dfrac2 mx – 1x – 1 + dfracx – 1x – 1 = dfrac1x – 1\Rightarrow 2x – 1 + x – 1 = 1endarray\eginarraylLeftrightarrow 3 mx – 2 = 1\Leftrightarrow 3x = 1 + 2endarray\ Leftrightarrow 3 mx = 3\ Leftrightarrow mxkern 1pt m = kern 1pt m3:3\ Leftrightarrow mxkern 1pt m = kern 1pt 1left( extloại ight)endarray)

Vậy phương trình vô nghiệm.

b) ĐKXĐ: (x e -1)

(matrixdfrac5 extx2 extx + 2 + 1 = – dfrac6x + 1 hfill cr Leftrightarrow dfrac5 extx2left( extx + 1 ight) + 1 = – dfrac6x + 1 hfill cr matrix Leftrightarrow dfrac5 extx2left( extx + 1 ight) + dfrac2x + 22left( x + 1 ight) = – dfrac6.22left( x + 1 ight) hfill cr Rightarrow 5x + 2x + 2 = – 12 hfill cr hfill cr Leftrightarrow 7 mx + 2 = – 12 hfill cr Leftrightarrow 7 mx = – 12 – 2 hfill cr Leftrightarrow 7 mx = – 14 hfill cr Leftrightarrow x = left( – 14 ight):7 hfill cr Leftrightarrow mxkern 1pt m = – 2left( extthỏa mãn ight) hfill cr )

Vậy phương trình bao gồm nghiệm (x = -2).

c) ĐKXĐ: (x e 0).

(eginarraylx + dfrac1x = x^2 + dfrac1x^2\ Leftrightarrow dfracx^3x^2 + dfracxx^2 = dfracx^4x^2 + dfrac1x^2\Rightarrow x^3 + x = x^4 + 1\Leftrightarrow x^4 – x^3 – x + 1 = 0\Leftrightarrow x^3left( x – 1 ight) – left( x – 1 ight) = 0\Leftrightarrow left( x – 1 ight)left( x^3 – 1 ight) = 0\Leftrightarrow left< eginarraylx – 1 = 0\x^3 – 1 = 0endarray ight. \Leftrightarrow x = 1left( extthỏa mãn ight)endarray)

Vậy phương trình có nghiệm duy nhất (x = 1).

d) ĐKXĐ: (x e 0; x e-1).

(eginarrayldfracx + 3x + 1 + dfracx – 2x = 2\Leftrightarrow dfracxleft( x + 3 ight)xleft( x + 1 ight) + dfracleft( x – 2 ight)left( x + 1 ight)xleft( x + 1 ight) = dfrac2xleft( x + 1 ight)xleft( x + 1 ight) \Rightarrow xleft( x + 3 ight) + left( x – 2 ight)left( x + 1 ight) = 2xleft( x + 1 ight)\Leftrightarrow x^2 + 3 mx + x^2 – 2 mx + x – 2 = 2 mx^2 + 2 mx\Leftrightarrow 2 mx^2 + 2 mx – 2, – 2 mx^2 – 2 mx = 0\Leftrightarrow 0x = 2left( extVô nghiệm ight)endarray)

Vậy phương trình đã mang đến vô nghiệm

Bài trước:

Bài tiếp theo:

Chúc các bạn làm bài xuất sắc cùng giải bài xích tập sgk toán lớp 8 cùng với giải bài bác 27 28 trang 22 sgk toán 8 tập 2!